Обзор подготовлен Ольгой Раковой (Intertech Corporation). При использовании - ссылка на обзор обязательна.

Вопросы автору можно задать в форме обратной связи или по бесплатному телефону +7 800 200 42 25

Содержание

I._Что_такое_полимеры_
Классификация_полимеров_
Физические_состояния_термопластов__
Классификация_термопластов_по_эксплуатационным_свойствам__
Классификация_термопластов_по_химической_структуре__
Классификация_термопластов_по_объему_производства__
Классификация_термопластов_по_типу_наполнителя__
Виды_полимеров,_краткая_характеристика,_способы_получения,_применение_
    1.1 Полиэтилен
    1.2 Полипропилен
    1.3_Поливинилхлорид
    1.4_Полиэтилентерефталат
    1.5_Полиуретаны

II._Рынок_полимеров_России_и_постсоветского_пространства
Рынок_крупнотоннажных_полимерных_материалов:_производители,_состояние_рынка
Рынок_изделий_из_полимерных_материалов:_производители_и_состояние_рынка_2008-2010гг
III._Исследовательские_организации
IV._Планируемые_инвестиции
V._Методы_исследования_полимеров
ИК-Фурье-_спектроскопия_
Термогравиметрический_анализ_
Дифференциальная_сканирующая_калориметрия
Термомеханический_анализ
Динамический_механический_анализ
Реология
Нормативная_документация_при_исследовании_полимеров

I. Что такое полимеры

Полимеры (греч. πολύ-— много; μέρος— часть)— неорганические и органические, аморфные и кристаллические вещества, получаемые путём многократного повторения различных групп атомов, называемых «мономерными звеньями», соединённых в длинные макромолекулы химическими или координационными связями.

Полимер— это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.[1] Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.[2]

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Вальса, они называются термопласты, если с помощью химических связей— реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвленным, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено— повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат ит.п.

Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве и медицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Классификация полимеров

Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации.
К первому классу относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичными представителями полимеров этого класса можно назвать полиэтилен, полипропилен, полиизобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение: [-СН2-СН2-]n.
Ко второму классу относится не менее обширная группа гетероцепных полимеров, макромолекулы которых в основной цепи помимо атомов углерода содержат гетероатомы (например, кислород, азот, серу и др.). К полимерам этого класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т.д., а также большая группа элементоорганических полимеров: полиэтиленоксид (простой полиэфир); полиэтилентерефталат (сложный полиэфир) полиамид; полидиметилсилоксан.
Третий класс полимеров - высокомолекулярные соединения с сопряженной системой связей. К ним относятся различные полиацетилены, полифенилены, полиоксадиазолы и многие другие соединения. Примерами таких полимеров могут служить: полиацетилен; полифенилен; полиоксадиазол. К этому же классу относится интересная группа хелатных полимеров, в состав которых входят различные элементы, способные к образованию координационных связей (они обычно обозначаются стрелками). Элементарное звено таких полимеров часто имеет сложное строение.
Среди многочисленных полимерных материалов наибольшее практическое применение пока находят материалы на основе представителей первого класса полимеров - карбоцепных высокомолекулярных соединений. Из карбоцепных полимеров можно получить ценнейшие материалы - синтетические каучуки, пластмассы, волокна, пленки и т.д., и исторически именно эти полимеры нашли первое практическое применение (получение фенолоформальдегидных смол, синтетического каучука, органического стекла и др.). Многие из карбоцепных полимеров стали впоследствии классическими объектами для исследования и создания теории механического поведения полимерных тел (например, полиизобутилен, полиметилметакрилат, полипропилен, фенолоформальдегидная смола и т.д.).

По способности к вторичной переработке полимеры подразделяются на термопласты и реактопласты. Рассмотрим первые подробнее. К термопластичным материалам или термопластам (thermoplast, thermoplastic) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов (thermoset), которые отверждаются при переработке и не способны далее переходить в жидкое агрегатное состояние.

Физические состояния термопластов

В зависимости от принимаемых фазовых состояний термопластичные материалы делятся на аморфные и кристаллические (точнее кристаллизующиеся). В кристаллизующихся литьевых термопластах всегда сохраняется какая-то доля незакристаллизованного (аморфного) материала, поэтому эти материалы иногда называют частично-кристаллическими. Некоторые материалы (PC), в принципе способные к кристаллизации, не кристаллизуются при литье под давлением, оставаясь аморфными. Есть материалы , которые могут быть аморфными или кристаллизоваться в зависимости от условий литья. Другие - очень сильно меняют степень кристалличности и свойства при изменении технологического режима. Способность к кристаллизации - очень важное свойство материалов, определяющее их поведение при переработке, и которое обязательно должно учитываться при конструировании изделий и пресс-форм и выборе технологического режима литья. Кристаллизующиеся материалы имеют высокий уровень усадки и анизотропии усадки (разница продольной и поперечной усадки). Пигменты и другие добавки, действуя как нуклеаторы (зародышеобразователи кристаллизации), могут значительно изменять структуру и свойства кристаллизующихся материалов.
В зависимости от температуры аморфные термопласты имеют 3 физических состояния: стеклообразное, высокоэластическое и вязкотекучее.
Для стеклообразного состояния характерны небольшие упругие деформации. Переход из высокоэластического состояния в стеклообразное происходит в некотором диапазоне температур, центр которого называют температурой стеклования Tc (glass transition temperature, Tg). В зависимости от метода определения температура стеклования может значительно изменяться. При повышении температуры стекловании повышается температура эксплуатации аморфного материала.
Полимер в высокоэластическом состоянии способен к большим обратимым деформациям, достигающим сотен и более %. При повышении температуры литьевой термопластичный материал переходит из высокоэластического состояния в вязкотекучее. Температура такого перехода называется температурой текучести Тт. Выше температуры текучести в полимере проявляются необратимые деформация вязкого течения. При нагревании аморфного материала обычно визуально наблюдается нефазовый переход, напоминающий процесс плавления для кристаллизующихся термопластов. Температуру такого перехода условно называют температурой плавления (melting temperature, Tm ) аморфного материала.
В кристаллизующихся термопластах аморфная фаза может приобретать описанные выше физические состояния. При нагревании кристаллическая фаза плавится. Температура этого фазового перехода называется температурой плавления Тпл (melting temperature, Tm). Свойства кристаллизующихся полимеров зависят от содержания кристаллической фазы и от того, в каком физическом состоянии (стеклообразном или высокоэластическом) находится при температуре эксплуатации аморфная фаза.

Классификация термопластов по эксплуатационным свойствам

Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.
Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):
- Материалы общего назначения или общетехнического назначения (general purpose plastics);
- Конструкционные пластмассы или пластмассы инженерно-технического назначения (engineering plastics);
- Суперконструкционные (super-engineering plastics) или высокотермостойкие полимеры (high temperature plastics).
Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения (general purpose TPE) и инженерно-технического назначения (engineering TPE).

Классификация термопластов по химической структуре

По химическому строению многочисленные литьевые термопластичные материалы обычно подразделяют на несколько групп (классов). Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров (polyester).
Традиционно выделяют группы полимеров на основе целлюлозы (cellulosic plastics), фторполимеров или фторопластов (fluoro plastics). Изготовители акриловых полимеров или акрилатов (acrylic) часто указывают только принадлежность материала к данной группе и не приводят тип материала.

Классификация термопластов по объему производства

Нередко в литературе выделяют группу крупнотоннажных материалов (volume plastics), к которым относят полиэтилен (PE) и полипропилен (PP). основные стирольные пластики (PS) и особенно АБС (ABS), акрилаты (acrylic), ПВХ (PVC) и бутылочный ПЭТ (PET).

Гомополимеры. Сополимеры. Стереоизомеры

Полимеры, построенные одинаковых мономеров называют гомополимерами (homopolymer), из разных - сополимерами (copolymer).
Для некоторых типов материалов (полипропилен, полистирол и др.) помимо химической формулы большое значение имеет стереоизомерия - тип пространственной конфигурации боковых групп атомов относительно полимерной цепи. Наиболее важные типы стереоизомеров:

- изотактический (isotactic) - боковые группы расположены по одну сторону полимерной цепи;
- синдиотактический (syndiotactic) - боковые группы последовательно чередуются по одну и другую сторону полимерной цепи;
- атактическиий (atactic) - беспорядочное расположение боковых групп по одну и другую сторону полимерной цепи.

Развитие технологи синтеза полимеров с использованием металлоценовых катализаторов, позволило наладить в последние годы промышленный выпуск различных стереоизомеров.
В качестве примера влияния стереоизомерии на эксплуатационные свойства материала можно привести синдиотактический полистирол (SPS), являющийся кристаллизующимся материалом в отличие от обычного аморфного атактического полистирола.
По структуре сополимеры делят на несколько типов:

- блок-сополимер (block-copolymer) - регулярное чередование последовательностей (блоков) звеньев в основной цепи;
- статистический сополимер (random copolymer) - нерегулярное чередование последовательностей звеньев;
- привитой сополимер (graft copolymer) - имеет основную цепь в виде гомополимера или сополимера, к которой присоединены боковые цепи;
- чередующийся или альтернатный сополимер (alternating copolymer) - регулярное чередование звеньев в основной цепи.

В последнее время большое развитие получили интерполимеры - сополимеры, образующие гомогенную структуру (компоненты не выделяются в отдельные фазы).

Помимо двойных сополимеров, построенных из двух типов мономерных звеньев, выпускаются тройные сополимеры (terpolymer), состоящие из трех типов звеньев, а также сополимеры с четырьмя и большим количеством типов звеньев. Тройными сополимерами являются АБС-пластики (ABS), ACA-сополимер (ASA) и др.

Классификация термопластов по типу наполнителя

Наполнители могут значительно изменять эксплуатационные и технологические свойства термопластов.
Термопласты, содержащие стекловолокно и др. виды стеклянных наполнителей, традиционно называют стеклопластиками (glass filled). В последние годы большое распространение получили материалы, наполненные длинным стекловолокном, требующие особых условий переработки.
Углепластиками (carbon filled) называют материалы, содержащие углеродное волокно.
Иногда выделяют группу "специальных" термопластов. К ним относят материалы, содержащие антипирены (материалы с повышенной стойкостью к горению), электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), добавки, придающие износостойкость и др.  

Виды полимеров, краткая характеристика, способы получения, применение

1.1.Полиэтилен

Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен. Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности).

Условное обозначение отечественного суспензионного полиэтилена низкого давления, состоит из названия материала «полиэтилен», восьми цифр, характеризующих конкретную марку, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен. Первая цифра 2 указывает на то, что процесс полимеризации этилена протекает на комплексных металлоорганических катализаторах при низком давлении. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена. Полиэтилен низкого давления подвергается усреднению холодным смешением, которое обозначается цифрой 0. Пятая цифра условно определяет группу плотности полиэтилена:
6 – 0,931-0,939 г/см3;
7 – 0,940-0,947 г/см3;
8 – 0,948-0,959 г/см3;
9 – 0,960-0,970 г/см3.
При определении группы плотности берут среднее значение плотности данной марки. Следующие цифры, написанные через тире, указывают десятикратное среднее значение показателя текучести расплава данной марки.
Пример обозначения базовой марки суспензионного полиэтилена низкого давления порядкового номера марки 10, усредненного холодным смешением, плотностью 0,948-0,959 г/см3 и средним показателем текучести расплава 7,5 г/10 мин:
Полиэтилен 21008-075 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления, не содержащей добавки красителя, состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения композиции суспензионного полиэтилена низкого давления базовой марки 21008-075 с добавками в соответствии с рецептурой 04:
Полиэтилен 210-04 ГОСТ 16338-85.
Пример обозначения композиции газофазного полиэтилена низкого давления марки 271 с добавками в соответствии с рецептурой 70:
Полиэтилен 271-70 ГОСТ 16338-85.
Обозначение композиции полиэтилена низкого давления с добавкой красителя состоит из наименования материала «полиэтилен», трех первых цифр базовой марки, написанного через тире номера рецептуры добавки (при ее наличии), написанного через запятую наименования цвета, трехзначного числа, обозначающего рецептуру окраски, и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Пример обозначения базовой марки полиэтилена низкого давления 21008-075 и композиции 210-04 на ее основе, окрашенных в красный цвет по рецептуре 101:
Полиэтилен 210, красный рец. 101 ГОСТ 16338-85,
Полиэтилен 210-04, красный рец. 101 ГОСТ 16338-85.

Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075.

Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95.

Условное обозначение отечественного полиэтилена высокого давления состоит из названия «полиэтилен», восьми цифр, сорта и обозначения стандарта, в соответствии с которым полиэтилен изготовлен.
Первая цифра – 1 указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа.
Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает на степень гомогенизации полиэтилена:
0 - без гомогенизации в расплаве;
1 - гомогенизированный в расплаве.
Пятая цифра условно определяет группу плотности полиэтилена, г/см3.
1 – 0,900-0,909
2 – 0,910-0,916
3 – 0,917-0,921
4 – 0,922-0,926
5 – 0,927-0,930
6 – 0,931-0,939
При определении группы плотности берут её номинальное значение для данной марки.
Следующие цифры, написанные через тире, указывают десятикратное значение показателя текучести расплава.
Пример обозначения полиэтилена высокого давления порядкового номера марки 15, без гомогенизации в расплаве, плотностью 0,917-0,921 г/см3 и номинальным значением показателя текучести расплава 7 г/10 мин 1-го сорта:
Полиэтилен 11503-070, сорт 1, ГОСТ 16337-77
Обозначение композиций полиэтилена высокого давления состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки, номера рецептуры добавки, написанного через тире, цвета и рецептуры окрашивания, сорта и обозначения стандарта, в соответствии с которым изготовлен полиэтилен.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 03, 1-го сорта:
Полиэтилен 102-03, сорт 1, ГОСТ 16337-77
В случае окрашенных композиций полиэтилена высокого давления к обозначению добавляется цвет и трехзначное число, обозначающее рецептуру окраски.
Пример обозначения композиции полиэтилена высокого давления базовой марки 10204-003, окрашенной в розовый цвет по рецептуре 104, 1-го сорта:
Полиэтилен 102, розовый 104, сорт 1, ГОСТ 16337-77
В обозначении полиэтилена высокого давления, предназначенного для изготовления пленок различного назначения, изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, а также полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200.

Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200.

В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии.
Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81.
Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности.
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09:
Полиэтилен 102-09К ГОСТ 16336-77
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07:
Полиэтилен 204-07К ГОСТ 16336-77

При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает.

Строение: Полиэтилен является продуктом полимеризации этилена, химическая формула которого С2Н4. В процессе полимеризации происходит разрыв двойной связи этилена и образуется полимерная цепь, элементарное звено которой состоит из двух атомов углерода и четырех атомов водорода:

Н   Н
|     |
– С – С –
|     |
Н   Н


В процессе полимеризации может происходить разветвление полимерной цепи, когда к растущей главной цепи сбоку присоединяется короткая полимерная группа. Разветвленность полимерной цепи препятствует плотной упаковке макромолекул и приводит к образованию рыхлой аморфно-кристаллической структуры материала и, как следствие, к уменьшению плотности полимера и понижению температуры размягчения. Различная степень разветвленности полимерной цепи полиэтиленов высокого и низкого давления и опр

Конструктор сайтов - uCoz